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I. INTRODUCTION

As the cost of mass to orbit decreases and launch ca-
dence increases thanks to improvements in launch vehicle
technology, the relative expense of the payload itself becomes
more significant to the mission designer. This often leads to
cost-cutting measures at the system level as the monetary
and timeline risk of mission failure are reduced. This design
philosophy can be seen in several of the lunar landers designed
by recipients of NASA’s Commercial Lunar Payload Services
contracts. Contractors are far more willing to reduce redun-
dancy and rely on low Technology Readiness Level (TRL)
thrusters, actuators, and processes than has generally been the
case for large-budget, long-timeline state funded missions.

These trades generally result in an increase in uncertainty
of the performance of spacecraft components, reduced fault
tolerance, and a reduced number of available sensors for use in
component health monitoring and fault detection. Specifically
regarding spacecraft thruster systems, the system designer
may remove redundant valves or other components, resulting
in a single point of failure for the system. They may also
remove monitoring sensors such as chamber pressure trans-
ducers, which would normally give direct insight into engine
performance.

With increased risk, higher uncertainty, and lower system
observability, developing methods to efficiently estimate the
system state and rapidly detect faults has the potential to
increase mission success rates at minimal cost.

II. PROBLEM STATEMENT

This work focuses on the sub-problem of health monitoring
and fault detection within the spacecraft propulsion system.
For simplicity, the spacecraft sensors, electronics, structure,
etc. will be assumed to always operate nominally. We therefore
model the full system dynamics using the Euler equation as:

Jω̇ = ω × Jω + τ + Jrt,x (1)

Where τ is the net torque applied by the thrusters, J is the
inertia tensor, ω is the angular velocity of the spacecraft, and
rt,x ∼ GWN (0, Qx) is zero-mean Gaussian White Noise
(GWN).

Additionally, our propagation equations depend on a param-
eter vector θ, which includes an “efficiency” for each thruster,
denoted θi, corresponding to the percentage of the nominal

thrust thruster i is currently producing. The “dynamics” of
these parameters are given by θt+1 = θt + rt,θ where
rt,x ∼ GWN (0, Qθ). In other words, our parameters are not
expected to change rapidly over time, which implies this model
should be able to capture gradual change in performance
over time as well as initial errors in parameter estimation
(highly likely when using low-TRL thrusters with little to no
spaceflight heritage).

However, in the case of a thruster failure, the change in
parameters is likely to be nearly instantaneous as most fail-
ure processes have extremely short timescales (flow passage
blockage, chamber wall burnthrough, actuator failure, etc.).
Therefore we also consider the case in which there exists a
jump discontinuity in θ. Specifically in the case that θi,t = θi,t,
and θi,t+1 ≈ 0 for some i.

We can calculate the applied torque τ based on the
thrust output of each thruster T1, · · · , TM , thruster parameters
θ1, · · · , θM and the system geometry as:

τ =

M∑
i=1

ri × θiFnom,i = T (u · θ)

Where ri is the vector from the center of mass to the point
of thrust application for thruster i, Fnom,i is the nominal
thrust applied by thruster i, u ∈ RM is the set of input
commanded thrusts for each thruster and T ∈ R3×M is a
matrix encompassing the geometry of the problem and the
thruster output.

In this work we assume that there already exists a filter
or sensor capable of estimating the full attitude state of the
satellite (orientation and angular rates). This is taken as a
discrete 7-element measurement vector xt =

[
qTt ωT

t

]T
at

each timestep with zero-mean GWN of constant distribution:
vt ∼ GWN (0, R). In other words, our measurement model
will be taken as follows:

yt = g(xt) + vt = Cxt + vt

C = I6×6

III. LITERATURE REVIEW

The basic spacecraft system dynamics model and Kalman
filter applied to this model are fundamental to all the computa-
tions presented here. Reference [1] provides an ideal overview



of the system dynamics, common discretizations, and measure-
ments models. The UKF is also a common filter employed in
attitude estimation problems, as explored in references [2],
[3], and [4]. However, as usual the UKF is found not to be
as computationally efficient at the EKF but does not require
calculation of a Jacobian and displays increased robustness to
disturbances.

Ref. [5] implements a Particle Filter (PF) based on the Boot-
strap Filter to address the same attitude estimation problem.
The primary advantage found with this filter was the extremely
wide convergence region, with global convergence in initial
attitude error. However, given the high computational time of
the PF, it is generally avoided given the limited processing
available on spacecraft.

With regard to parameter estimation, reference [6] lays
out the fundamental optimization problem underlying the
combined goal of optimally estimating a set of parameters in
combination with the spacecraft state, given a set of inputs and
observations with objective of minimizing the two-norm of the
error between the estimated and true state vectors, as well as
the two-norm of the estimated and true parameter vector. The
most common methods of simultaneous state and parameter
estimation are to either formulate the problem as a joint or
dual estimation method.

The joint method concatenates the parameter vector to the
state vector, and runs a single filter on the augmented system.
This method is employed in [4] to estimate the alignment
of an attitude rate sensor during operation. As the complete
system is solved, this formulation allows modelling of direct
coupling between parameters and system states, but increases
computational complexity due to a larger matrix inversion.
Additionally, the coupling of parameter and state spaces can
introduce instabilities as the error is also closely coupled [2].

The dual method instead estimates the state and parameter
vectors using two separate iterative filters which share limited
information. This method avoids the increased computational
cost of a larger matrix inversion as well as many instabilities
introduced by coupling. However, it cannot capture coupling
effects as the Joint filter can. Reference [2] investigates use of
a Dual UKF to estimate both the spacecraft state and a set of
parameters representing the moment of inertia vector of the
spacecraft.

Finally, with respect to the problem of early detection of
rapid-onset faults, reference [7] provides a strong overview
of the state-of-the-art in fault detection methods. This paper
describes the two most common methods of fault detection,
isolation, and reconfiguration (FDIR) as hardware redundancy
and analytical redundancy. Analytical redundancy relies on
a software model of the system for estimation and fault-
detection and software-defined responses to various system
states (including component failures) to reduce overall system
risk, which is the approach investigated here.

A common model for fault detection is based on an “Inter-
acting Multiple Model” (IMM) as described in [8], in which
the system is assumed to be in one of a set of modes, either
faulted or nominal. Reference [8] uses this formulation to

detect partial and total faults in reaction wheels in a spacecraft.
Reference [9] extends this model to additionally detect faults
in spacecraft sensors. This model is investigated in this work
in combination with the Dual EKF, as expanded on below.

IV. LINEARIZED STATE EQUATIONS

Following from [10], we work with an exact linearization
of the attitude dynamics equations through a nonlinear change
of variables as follows:

First we define the attitude using a unit quaternion represen-
tation q̄ = [q, q0]T where [q, q0] ∈ R3×R and qT q+(q0)2 = 1.

We then define the nonlinear forward transformation:

q̃ = q

ω̃ =
1

2
(q0Jω + q × (Jω))

x̃ =

[
q̃
w̃

]
ũ =

1

2
(q0ω̇ + q × ω̇)− 1

4
ωTωq

ω̇ can be found from equation 1 as:

ω̇ = J−1(−ω×Jω + T (u · θ))

Where a× denotes the skew-symmetric matrix of vector a
This results in the Linear Dynamics:

q̇ = ω̃ ˙̃ω = ũ

or:

˙̃x =

[
0 1
0 0

]
x̃+

[
0
1

]
ũ (2)

˙̃x = f(x) = Ax̃+Bũ (3)

The inverse transformation is then defined by:

q = q̃ (4)

ω =
2

q0
((q0)2w̃ + q̃q̃T w̃ + q0q̃ × w̃) (5)

Here we note that the coefficient on the inverse transfor-
mation for ω includes 1/q0, creating a singularity at q0 = 0.
In other words, this transformation is only valid as long as
the domain on which the dynamics are evaluated restrict the
quaternion to a single half-plane. However, we can avoid
the singularity simply by taking our initial orientation at any
timestep to have q0 = 1 through a shift of reference frame. By
then maintaining a record of the relative quaternion between
our current orientation and the inertial frame, we can retrieve
our orientation in the inertial frame at any time. Therefore,
as long as we we restrict our system and timestep to angular
velocities low enough that our trajectory will not cross the
half-plane during a single timestep, this singularity will not
be encountered.

For this work, a first-order Euler discretization of these
equations is used for both simulation and filtering.



V. THE DUAL EXTENDED KALMAN FILTER

We would not expect to see significant coupling between
the system dynamics and our engine parameters given the sig-
nificantly different timescales on which these processes occur.
Therefore for improved computational simplicity and model
stability we choose to implement a Dual Extended Kalman
Filter (DEKF) for simultaneous state estimation and parameter
estimation. As described in [11], the DEKF incorporates two
Kalman Filters operating in parallel. The first estimates the
system state while the second estimates the parameter vector.
We will refer to these as the state filter and parameter filter
respectively.

Fig. 1. Diagram of DEKF operation, with the state filter operating above and
the parameter filter below [12].

These filters share information at two points. First, the
predicted parameters θt+1|t (θ̂−k+1 in the diagram) are used
in the prediction step of the state filter (and the update if
relevant, but in our application the update is independent of
θ). Second, the predicted state xt+1|t (x̂−

k+1 in the diagram)
is used in the update step of the parameter filter. This means
our state is propagated using our best guess of our parameters
given our past measurements, inputs, and state estimates, and
our parameter vector is updated using our most recent state
estimate given our past measurements, inputs, and parameter
estimates. Therefore we see that there is an interdependency
created each timestep between both the state estimates and
parameter estimates. However, as we are assuming both the
state and parameter vectors evolve as Markovian processes,
our overall estimate ends up evolving only as a function of
our initial state estimate, our measurements y, and inputs u.

A. Filter Equations

The Dual EKF Predict and Update steps can be found in
Section III of [11]. For the most part they are equivalent to
the traditional EKF equations for both state and parameter
filters. The primary differences in our application can be found
in the state mean prediction and parameter update equations.
The state mean predict equation is simply changed from
xt+1|t = f(xt|t) to xt+1|t = f(xt|t, θt+1|t). Note there is no
change in the state update equations in our application as the
measurement function is independent of the parameter vector,
making ∂g(x,θt+1|t)

∂x = ∂g(x)
∂x as in the traditional EKF.

The largest change from the vanilla EKF comes in the
parameter update equation, where what would normally be
∂g(θ)
∂θ

∣∣∣
θ=θt+1|t

becomes dg(x̃t+1|t,θ)

dθ

∣∣∣
θ=θt+1|t

.

This expression must then be expanded as:

dg(x̃t+1|t, θ)

dθ
=

∂g(x̃t+1|t, θ)

∂θ
+

∂g(x̃t+1|t, θ)

∂x̃t+1|t

dx̃t+1|t

dθ

dx̃t+1|t

dθ
=

∂f(x̃t|t, θ)

∂θ
+

∂f(x̃t|t, θ)

∂x̃t|t

dx̃t|t

dθ

dx̃t|t

dθ
=

dx̃t|t−1

dθ
−Kx,t−1

dg(x̃t|t−1, θ)

dθ

Where Kx,t−1 is the state Kalman gain from the previous
timestep. We can in fact use stored values from the previous
timestep to represent all of dxt|t−1

dθt−1
, Kx,t−1, and dg(xt|t−1,θt−1)

dθt−1
,

and initialize each to 0 at t = 0.
In the context of our dynamics, this results in:

∂ũ

∂θ
=

1

2
(q0I3×3 + q×)J−1Tu

dx̃t|t

dθ
= Rk−1

k

(
dx̃t|t−1

dθ
−Ks,k−1

dg(x̃t|t−1, θ)

dθ

)
Rk−1

k is the inverse of the previous step’s rotation update

dg(x̃t+1|t, θ)

dθ

∣∣∣∣
θ=θt+1|t

= ∆tC

(
A
dx̃t|t

dθ
+B

∂ũ

∂θ

)
This value is then used in place of our traditional measure-

ment Jacobian in the parameter update step.

VI. THE INTERACTING MULTIPLE MODEL FILTER

As mentioned above, the DEKF is not designed to capture
rapid changes in parameter values, such as a step change in
engine “efficiency” caused by an engine failure. Thus, if we
would like to rapidly identify and compensate for thruster
failures, a different approach is required. In this work we
employ an Interacting Multiple Model (IMM) filter for this
purpose.

The IMM filter simultaneously maintains a bank of filters,
each of which assumes the system is operating in a given mode
at any timestep, for a total of N modes. The first mode is taken
to be nominal operation, as filtered by the DEKF above, while
the remainder assume that some fault condition has occurred.
In this work we generally limit these fault conditions to that
of any single thruster failure at a given time, corresponding
to some θi = 0, in our model to improve readability of
plots and reduce runtime. However, this can be extended to
include any fault condition or combination of conditions (eg.
all combinations of thruster failures, partial thruster failures,
etc.). All modes other than the nominal mode are maintained
as traditional EKFs, although their parameters other than that
of the faulty engine are updated with the DEKF values when
the probability of this mode is above a threshold α = 0.99.

The IMM assumes that the true system can be modelled by
a Jump Markov Model, meaning that given the system is in
mode i at t, there is a probability πij that the system will jump
to mode j at t + 1, where πij ≥ 0 ∀ i, j,

∑
j πij = 1. The

model then proceeds to maintain a probability distribution over
all of the modes corresponding to the estimated likelihood of



Fig. 2. Diagram of IMM operation [13].

the system being in a given mode at a given time. The full
formulation of the filter as used here can be found in [8].

This probability distribution is updated at each time by
running the predict and update steps of each filter using the
most recent input and observation. A likelihood function for
each mode j is then computed for each model as given below:

Lj,t+1 =
1√

|(2π)Sj,t+1|
exp

[
−1

2
νTj,t+1S

T
j,t+1νj,t+1

]
νj = yt+1 − g(xj,t+1|t+1) = Measurement Residual

Sj =
∂g(x)

∂x

∣∣∣∣
xj,t+1|t

Σj,t+1|t

(
∂g(x)

∂x

∣∣∣∣
xj,t+1|t

)T

+R

= Residual Covariance

The posterior probability of each mode is then updated using
Bayes’ rule as:

µj,t+1 =
µj,t+1|tLj,t+1∑N
1 µj,t+1|tLj,t+1

Where µj,t+1|t =
∑N

i=1 πijµi,t is the prior probability given
our jump Markov model of being in state j at time t+ 1 and
previous mode probabilities.

[9] proposes a modification to the likelihood function as:

Lj,t+1 =
1

(2π)m/2
√
|Sj,t+1|

exp

[
−β

1

2
νTj,t+1S

T
j,t+1νj,t+1

]
Where m = 6 is the size of the attitude system state and β is
a free parameter which, when greater than 1 reduces the time
to fault detection at the cost of increased false positives and
noise, and when less than 1 increases the time to detection but
reduces false positives.

VII. RESULTS AND DISCUSSION

To test each of these filters, they were run on a simulated
system with relatively randomized but discrete (as would be
used on pulsed attitude control thrusters) inputs to the thrusters
as can be seen in Figure 3. The simulation parameters can be
found in Table I. The true values of θ were not set to vary

randomly according to Qθ as this is not realistic, but followed
some preset profiles as shown in each estimation figure.

Fig. 3. True and estimated (with 95% confidence interval) state trajectories
and control inputs for the test system over five seconds. This behavior was
periodic with additive Gaussian noise in state and measurements.

TABLE I
PARAMETERS USED FOR SIMULATION

Parameter Value
J I3×3

∆t 0.005 s

Qx

[
0 0
0 0.02I3×3

]
Qθ 10−7IM×M

R 5× 10−3I6×6

x̃0|0 ∼ N (x̃0, 0.01I6×6)
θ0|0 ∼ N (1, 0.1IM×M )

The spacecraft was configured with M = 4 thrusters such
that each exerted unit torque at full thrust and efficiency around
a principal spacecraft axis as given in Table II. Note that
thrusters 1 and 3 exert identical torque under identical thrust.

TABLE II
THRUSTER TORQUE VECTORS

Thruster Number Axis
0 +x
1 +z
2 +y
3 +z

A. Parameter Estimation with DEKF

The DEKF was tested with both constant and time varying
efficiencies. In Figure 4, we see that in each case the estimate
converges to closely follow the true parameter in less than ten
seconds. We do see relatively significant noise in the mean es-
timate of each parameter, due to a combination of process and
measurement noise, and note the relatively wide confidence
interval for each estimate, despite the mean tracking quite
closely. This demonstrates that as our parameter estimate is
a tertiary measurement which is affected by any uncertainties



Fig. 4. True and estimated (with 95% confidence interval) parameter
trajectories for the test system.

upstream in state and measurement, this estimate is highly
sensitive to increases in upstream uncertainties.

A major limitation of this approach can be seen if the
geometrically identical thrusters 1 and 3 are actuated on the
same schedule as in Figure 5. In this case thrusters 1 and 3 are
estimated to have identical efficiencies and follow an average
path between the true efficiencies. In this case our parameters
are not fully observable as the torque exerted in the z direction
is simply the sum of thrusters 1 and 3. We do however see
that the variance is higher in each of these thrusters in this
situation, meaning the true parameter is still captured at all
times within the 95% confidence interval.

Fig. 5. True and estimated (with 95% confidence interval) parameter
trajectories with identical control applied to thrusters 1 and 3.

The other major drawback to this method comes with a
step change in parameters, as demonstrated in Figure 6. We
see that it takes almost 10 seconds for the system to again
determine the true parameter values with the faulted thruster,
far longer than we’d like to take to react. We also see an error
is propagated to thruster 3 due to its correlation with thruster
1.

B. Fault Detection with IMM

The IMM was tested with similar failure cases to the
DEKF, with a given thruster failing at 15s. The models were

Fig. 6. True and estimated (with 95% confidence interval) parameter
trajectories with thruster 1 failure at 15s.

numbered as model 0 being the nominal DEKF, and each
model j = 1, 2, 3, 4 corresponding to thruster j − 1 having
failed. The transition model was given as πii = 0.9995,
πij = 0.0005 ∀ i ̸= j corresponding to a 99.95% chance
of remaining in the current mode, and uniform probability of
transitioning to any other mode otherwise. A value of β = 0.25
was used in all cases.

Fig. 7. Mode probabilities (above) and parameter estimates (below) for
thruster 0 failure at 15s.

In Figure 7, the fault is detected and the system identifies
it is most likely in mode 1 within 83 milliseconds of failure.
Moreover, the parameters continue to be estimated accurately
using the weighted estimate: θ̂i =

∑N
j=0 µj,tθj,i,t|t.

In Figures 8 and 9 we see the parameter estimation and
mode probabilities with a more drastic but still gradual vari-
ation in parameter vectors. Figure 8 shows the performance
using our model with the DEKF, while Figure 9 uses a static
EKF with nominal parameters as the nominal model. We see a
drastic improvement in both the mode detection stability and
parameter estimation with the DEKF model. This formulation
can isolate gradual changes in parameters from step faults
as each model maintains a relevant running estimate of all
parameters not assumed to be faulted, thereby minimizing
residuals due to gradual parameter shifts. The model without



the DEKF very poorly estimates parameters as this is not a
primary component of the system, and the large residuals due
to parameter shifts cause significant noise an numerous false-
positives as parameters gradually decrease.

Fig. 8. Mode probabilities (above) and parameter estimates (below) for
thruster 0 failure at 22s with strong parameter variation and our DEKF
variable-parameter model for nominal operation.

Fig. 9. Mode probabilities (above) and parameter estimates (below) for
thruster 0 failure at 22s with strong parameter variation and an EKF constant-
parameter model for nominal operation.

Finally, we investigate the case of multiple thruster fail-
ure, in which we add six more EKFs corresponding to any
combination of two thrusters having failed. The result can be
seen in Figure 10, where we quickly identify each fault, with
slightly more delay on the second. This model does need 150%
more EKFs than the single-failure model, requiring far more
computation. This could be alleviated by assuming only one
thruster fails at a time, and then instantiating multiple failure
filters if a single thruster is determined to have failed (eg. if the
mode probability of mode 1 exceeds a threshold, instantiate
three EKFs for failure modes in combination with thruster 0).

Fig. 10. Mode probabilities (above) and parameter estimates (below) for
thruster 0 failure at 15s followed by thruster 2 failure at 22s.

VIII. CONCLUSION AND FUTURE WORK

This work developed a method to estimate spacecraft atti-
tude control thruster efficiencies from input controls and atti-
tude state measurements using a DEKF, which showed strong
convergence to the true system parameters in the case of a
fully observable system and slow changes in parameters. This
estimation was then incorporated into an IMM filter to add the
capability to detect step changes in parameters in the particular
case of thruster failure. This method demonstrated the ability
to detect thruster failures on a timescale 100 times faster
than the DEKF model, and continuously maintain an accurate
estimate of system parameters with minimal disturbance when
entering the fault condition. Additionally, the incorporation of
the DEKF in the IMM was shown to greatly increase stability
in fault detection.

This work assumed that the estimation of the system attitude
was an input measurement in this algorithm. However it is
more likely this is a value computed by some other onboard
filter. This work could be expanded to either incorporate this
estimation directly in the DEKF, or make use of the covariance
matrix output by the attitude estimation filter, rather than just
sampling the mean.

Additional avenues for exploration include incorporating
additional torques not provided by the thrusters (eg. reaction
wheels and gravitational torque) and adding multiple layers to
the IMM filters to increase sensitivity without increased noise.
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